Docs
General
Types
Codegen
Extensions
>Errors
>Guides
Editor integration
Concepts
Integrations
Federation
Operations
This documentation refers to an experimental feature of Strawberry, these features may change significantly and without a warning before they become a part of the main strawberry API.
This documentation is aimed at early adopters and people who are curious. If you're interested in contributing to this feature join the discussion on our GitHub page.
Pydantic support
Strawberry comes with support for Pydantic. This allows for the creation of Strawberry types from pydantic models without having to write code twice.
Here's a basic example of how this works, let's say we have a pydantic Model for a user, like this:
from datetime import datetimefrom typing import List, Optionalfrom pydantic import BaseModel
class User(BaseModel): id: int name: str signup_ts: Optional[datetime] = None friends: List[int] = []
We can create a Strawberry type by using the
strawberry.experimental.pydantic.type
decorator:
import strawberry
from .models import User
@strawberry.experimental.pydantic.type(model=User)class UserType: id: strawberry.auto name: strawberry.auto friends: strawberry.auto
The strawberry.experimental.pydantic.type
decorator accepts a Pydantic model
and wraps a class that contains dataclass style fields with strawberry.auto
as the type
annotation. The fields marked with strawberry.auto
will inherit their types from the
Pydantic model.
If you want to include all of the fields from your Pydantic model, you can
instead pass all_fields=True
to the decorator.
-> Note Care should be taken to avoid accidentally exposing fields that -> weren't meant to be exposed on an API using this feature.
import strawberry
from .models import User
@strawberry.experimental.pydantic.type(model=User, all_fields=True)class UserType: pass
Input types
Input types are similar to types; we can create one by using the
strawberry.experimental.pydantic.input
decorator:
import strawberry
from .models import User
@strawberry.experimental.pydantic.input(model=User)class UserInput: id: strawberry.auto name: strawberry.auto friends: strawberry.auto
Interface types
Interface types are similar to normal types; we can create one by using the
strawberry.experimental.pydantic.interface
decorator:
import strawberryfrom pydantic import BaseModelfrom typing import List
# pydantic typesclass User(BaseModel): id: int name: str
class NormalUser(User): friends: List[int] = []
class AdminUser(User): role: int
# strawberry types@strawberry.experimental.pydantic.interface(model=User)class UserType: id: strawberry.auto name: strawberry.auto
@strawberry.experimental.pydantic.type(model=NormalUser)class NormalUserType(UserType): # note the base class friends: strawberry.auto
@strawberry.experimental.pydantic.type(model=AdminUser)class AdminUserType(UserType): role: strawberry.auto
Error Types
In addition to object types and input types, Strawberry allows you to create "error types". You can use these error types to have a typed representation of Pydantic errors in GraphQL. Let's see an example:
import pydanticimport strawberry
class User(BaseModel): id: int name: pydantic.constr(min_length=2) signup_ts: Optional[datetime] = None friends: List[int] = []
@strawberry.experimental.pydantic.error_type(model=User)class UserError: id: strawberry.auto name: strawberry.auto friends: strawberry.auto
type UserError { id: [String!] name: [String!] friends: [[String!]]}
where each field will hold a list of error messages
Extending types
You can use the usual Strawberry syntax to add additional new fields to the GraphQL type that aren't defined in the pydantic model
import strawberryimport pydantic
from .models import User
class User(BaseModel): id: int name: str
@strawberry.experimental.pydantic.type(model=User)class User: id: strawberry.auto name: strawberry.auto age: int
type User { id: Int! name: String! age: Int!}
Converting types
The generated types won't run any pydantic validation. This is to prevent confusion when extending types and also to be able to run validation exactly where it is needed.
To convert a Pydantic instance to a Strawberry instance you can use
from_pydantic
on the Strawberry type:
import strawberryfrom typing import List, Optionalfrom pydantic import BaseModel
class User(BaseModel): id: int name: str
@strawberry.experimental.pydantic.type(model=User)class UserType: id: strawberry.auto name: strawberry.auto instance = User(id="123", name="Jake")
data = UserType.from_pydantic(instance)
If your Strawberry type includes additional fields that aren't defined in the
pydantic model, you will need to use the extra
parameter of from_pydantic
to
specify the values to assign to them.
import strawberryfrom typing import List, Optionalfrom pydantic import BaseModel
class User(BaseModel): id: int name: str
@strawberry.experimental.pydantic.type(model=User)class UserType: id: strawberry.auto name: strawberry.auto age: int
instance = User(id="123", name="Jake")
data = UserType.from_pydantic(instance, extra={"age": 10})
The data dictionary structure follows the structure of your data -- if you have
a list of User
, you should send an extra
that is the list of User
with the
missing data (in this case, age
).
You don't need to send all fields; data from the model is used first and then
the extra
parameter is used to fill in any additional missing data.
To convert a Strawberry instance to a pydantic instance and trigger validation,
you can use to_pydantic
on the Strawberry instance:
import strawberryfrom typing import List, Optionalfrom pydantic import BaseModel
class User(BaseModel): id: int name: str
@strawberry.experimental.pydantic.input(model=User)class UserInput: id: strawberry.auto name: strawberry.auto input_data = UserInput(id="abc", name="Jake")
# this will run pydantic's validationinstance = input_data.to_pydantic()
Constrained types
Strawberry supports pydantic constrained types. Note that constraint is not enforced in the graphql type. Thus, we recommend always working on the pydantic type such that the validation is enforced.
from pydantic import BaseModel, conlistimport strawberry
class Example(BaseModel): friends: conlist(str, min_items=1)
@strawberry.experimental.pydantic.input(model=Example, all_fields=True)class ExampleGQL: ...
@strawberry.typeclass Query: @strawberry.field() def test(self, example: ExampleGQL) -> None: # friends may be an empty list here print(example.friends) # calling to_pydantic() runs the validation and raises # an error if friends is empty print(example.to_pydantic().friends)
schema = strawberry.Schema(query=Query)
input ExampleGQL { friends: [String!]!}
type Query { test(example: ExampleGQL!): Void}
Classes with __get_validators__
Pydantic BaseModels may define a custom type with __get_validators__
logic. You will need to add a scalar type and add the mapping to the scalar_overrides
argument in the Schema class.
import strawberryfrom pydantic import BaseModel
class MyCustomType: @classmethod def __get_validators__(cls): yield cls.validate @classmethod def validate(cls, v): return MyCustomType()
class Example(BaseModel): custom: MyCustomType
@strawberry.experimental.pydantic.type(model=Example, all_fields=True)class ExampleGQL: ...
MyScalarType = strawberry.scalar( MyCustomType, # or another function describing how to represent MyCustomType in the response serialize=str, parse_value=lambda v: MyCustomType(),)
@strawberry.typeclass Query: @strawberry.field() def test(self) -> ExampleGQL: return Example(custom=MyCustomType())
# Tells strawberry to convert MyCustomType into MyScalarTypeschema = strawberry.Schema(query=Query, scalar_overrides={MyCustomType: MyScalarType})
Custom Conversion Logic
Sometimes you might not want to translate your Pydantic model into Strawberry using the logic provided in the library. Sometimes types in Pydantic are unrepresentable in GraphQL (such as unions of scalar values) or structural changes are needed before the data is exposed in the schema. In these cases, there are two methods you can use to control the conversion logic more directly.
First, you can use a different type annotation in your Strawberry model for a
field type instead of using strawberry.auto
to choose an equivalent type. This
allows you to do things like converting values to custom scalar types or
converting between basic types. Strawberry will call the constructor of the new
type annotation with the field value as input, so this only works when
conversion is possible through a constructor.
import base64import strawberryfrom pydantic import BaseModelfrom typing import Union, NewType
class User(BaseModel): id: Union[int, str] # Not representable in GraphQL hash: bytes
Base64 = strawberry.scalar( NewType("Base64", bytes), serialize=lambda v: base64.b64encode(v).decode("utf-8"), parse_value=lambda v: base64.b64decode(v.encode("utf-8")),)
@strawberry.experimental.pydantic.type(model=User)class UserType: id: str # Serialize int values to strings hash: Base64 # Use a custom scalar to serialize values
@strawberry.typeclass Query: @strawberry.field def test() -> UserType: return UserType.from_pydantic(User(id=123, hash=b"abcd"))
schema = strawberry.Schema(query=Query)
print(schema.execute_sync("query { test { id, hash } }").data)# {"test": {"id": "123", "hash": "YWJjZA=="}}
The other, more comprehensive, method for modifying the conversion logic is to
provide custom implementations of from_pydantic
and to_pydantic
. This allows
you full control over the conversion process and bypasses Strawberry's built in
conversion rules completely, while still registering the new type as a Pydantic
conversion type so it can be referenced in other models.
This is useful when you need to represent structures that are very different
from GraphQL standards, without changing the underlying Pydantic model. An
example would be a use case that uses a dict
field to store some
semi-structured content, which is difficult to represent in GraphQL's strict
type system.
import enumimport dataclassesimport strawberryfrom pydantic import BaseModelfrom typing import Any, Dict, Optional
class ContentType(enum.Enum): NAME = "name" DESCRIPTION = "description"
class User(BaseModel): id: str content: Dict[ContentType, str]
@strawberry.experimental.pydantic.type(model=User)class UserType: id: strawberry.auto # Flatten the content dict into specific fields in the query content_name: Optional[str] = None content_description: Optional[str] = None
@staticmethod def from_pydantic(instance: User, extra: Dict[str, Any] = None) -> "UserType": data = instance.dict() content = data.pop("content") data.update({f"content_{k.value}": v for k, v in content.items()}) return UserType(**data)
def to_pydantic(self) -> User: data = dataclasses.asdict(self)
# Pull out the content_* fields into a dict content = {} for enum_member in ContentType: key = f"content_{enum_member.value}" if data.get(key) is not None: content[enum_member.value] = data.pop(key) return User(content=content, **data)
user = User(id="abc", content={ContentType.NAME: "Bob"})print(UserType.from_pydantic(user))# UserType(id='abc', content_name='Bob', content_description=None)
user_type = UserType(id="abc", content_name="Bob", content_description=None)print(user_type.to_pydantic())# id='abc' content={<ContentType.NAME: 'name'>: 'Bob'}